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In computerized adaptive testing pretest items are presented in conjunction 
with operational items to renew the item bank. Pretest items are calibrated, 
and possible differential item functioning (DIF) is analyzed. Some 
difficulties arise due to the large amount of missing responses, which can be 
avoided by the use of fixed item parameter calibration (FIPC; Kim, 2006) 
methods. In this study, we applied the multiple weights updating and 
multiple EM cycles method, with response imputation (as suggested by Lei, 
Chen, & Yu, 2006) and without response imputation for non-applied items. 
The IRT likelihood ratio test (IRT-LRT) was used for DIF detection. The 
manipulated factors were type of DIF, DIF size, impact size, test length, and 
sample size. The results showed that the FIPC method is suitable for 
detecting large-size DIF in large samples. In the presence of impact the use 
of imputation led to a bias in the effect-size measure of the DIF. 

 

 

In computerized adaptive testing (CAT) programs, periodic 
replacement of obsolete or overexposed items is required (Mills & 
Stocking, 1996). For that purpose, new (pretest) items are usually presented 
to examinees during the course of their testing with already calibrated and 
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in-use (operational) items. In the simplest design, analyzed in the current 
study, a fixed (nonadaptive) small block of pretest items –even a single 
item–, not considered for scoring test takers, is embedded within the CAT. 
One advantage of the online calibration design is that pretest items are 
presented to representative and motivated samples in a real evaluation 
situation (Parshall, 1998). Subsequently, pretest items can be calibrated and 
must be routinely checked for differential item functioning (DIF).  

DIF occurs when the conditional probability of a correct response, 
given the latent ability, differs between two compared groups (termed the 
reference and the focal group). Detecting DIF is important because DIF can 
invalidate procedures for making decisions about individuals. DIF items 
should be especially avoided in CAT because fewer items are administered 
to estimate the examinees’ test scores, and the sequence of the administered 
items may be influenced by the responses to the flawed items (Zwick, 
2010). Furthermore, in fixed tests, the item DIF may cancel each other out, 
resulting in minimal test bias at the score level, whereas in CATs, the DIF 
will always depend on the set of items administered (Steinberg, Thissen, & 
Wainer, 1990). 

Pretest on-line calibration design is being use increasingly to renew 
the item pool (Pommerich & Segall, 2004).  However, some issues have 
been identified in the implementation of DIF methods in the CAT 
environment (Lei, Chen, & Yu, 2006; Nandakumar & Roussos, 2004; 
Zwick, 2010). One primarily affects DIF methods where examinees are 
matched by their direct scores (sum of correct items), which is no longer 
appropriate in CATs (Harmes, Parshall, & Kromrey, 2003; Steinberg et al., 
1990), where the number of correct responses is expected to be roughly the 
same for all the examinees with independence of their trait level. 
Consequently, some DIF methods such as Mantel-Haenzel standardization, 
SIBTEST and logistic regression have been adapted by using CAT ability 
estimate (Lei et al., 2006; Nandakumar & Roussos, 2004) or expected score 
over the entire item pool based on CAT ability estimate (Zwick, Thayer, & 
Wingersky, 1993, 1994a, 1994b, 1995) as matching variables. 

Additional problems for DIF detection in CATs arise from the 
incompleteness of the response matrix, as there will be a huge proportion of 
missing responses for adaptively applied operational items and many items 
may be responded by very few examinees. Also, operational item responses 
are based on a restricted range of ability. If focal and reference group 
distributions for the latent trait differs, there should be little overlap in the 
anchor operational items.  
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Because item response theory (IRT) is required in CAT development, 
the IRT likelihood ratio test (IRT-LRT) appears to be a logical choice for 
assessing DIF in the CAT environment (Miller, 1992). Thissen, Steinberg, 
and Wainer (1988, 1993) proposed the IRT-LRT, in which the log-
likelihood is compared between two different models (one in which item 
parameters are set equally in the focal and the reference group and another 
in which these parameters are allowed to vary). With IRT-LRT, both 
parameter estimates of pretest items and DIF analysis are obtained at the 
same time. IRT-LRT technique offers the additional advantage of being 
applicable directly to CAT data. Unlike other DIF methods, the IRT-LRT 
does not rely on the direct score. In applying this IRT procedure in the 
online calibration scenario, we need to calibrate the pretest items along with 
the operational items for each group (reference and focal); if the test 
indicates DIF presence then a DIF effect size should be computed. There 
are two alternative strategies to calibrate pretest items: concurrent 
calibration with linking and fixed item parameter calibration (Kim, 2006).  

In the concurrent calibration with linking method, both operational 
and pretest item parameters are estimated together at the first step without 
considering the existing scale for operational items. Then, in a second step, 
pretest item parameters are placed onto the existing scale by equating using 
the operational items as linking items (Ban, Hanson, Wang, Yi, & Harris, 
2001; Hsu, Thompson, & Chen, 1998; Stocking, 1988). This leads two main 
problems. First, CAT data are not optimal for operational item parameter 
estimation due to data sparseness of the response matrix and a restricted 
range of ability of the examinees responding to the items (Haynie & Way, 
1995). For example, some operational items can be rarely applied and thus 
sample size for its calibration will be very small. Furthermore, lack of item 
overlap due to the adaptive application increase the problem of sparseness. 
Harmes,  Parshall, and Kromrey (2001) found that calibration software 
(v.g., BILOG) was unable to successfully calibrate sparse response data 
matrices without the application of missing data treatments. Second, the 
pretest item parameters should be transformed onto the established 
(operational) scale by a linking step that might add an error to the item 
parameters and group distribution estimates (Ban et al., 2001). This problem 
can be especially severe as operational item parameters are being estimated 
within a problematic design. 

 In contrast, fixed item parameter calibration (FIPC) does not involve 
a linking step. In FIPC the operational item parameters are fixed to their 
previously estimated parameter values and only the pretest items are 
calibrated (Kim, 2006). FIPC has been found to be successful in calibrating 
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pretest items in the CAT environment (Ban et al., 2001). Up to now, FIPC 
has not been proposed to assess DIF with CATs. 

At present, only one study (Lei et al., 2006) has used the IRT-LRT for 
DIF analysis in CAT. Lei et al. (2006) suggested that the IRT-LRT has not 
been examined in the CAT environment due largely to the complexity of 
estimation when there is a huge proportion of non-randomly missing data in 
the operational items. To overcome that issue, Lei et al. suggested “[t]o 
capitalize, on the advantages of IRT, by imputing data from the assumed 
model for the empty cells” (p. 247). The imputed responses were generated 
based on the probabilities of getting the items correct, computed from the 
three-parameter logistic model using the known item parameters and CAT 
ability estimates. Results for IRT-LRT with imputation were promising. 
However, with this DIF detection design, equating is still required for 
recovering pretest item parameters in the adequate metric for the concurrent 
calibration method. And, importantly, CAT ability estimates are used for 
imputation, but estimation uncertainty is ignored (Harmes et al., 2003; Little 
& Rubin, 1987). 

Thus, the only study to date that has evaluated the appropriateness of 
the IRT-LRT method for detecting DIF on CATs (Lei et al., 2006) used a 
concurrent calibration method and imputed a large proportion of the data 
set. Despite the general satisfactory performance, Lei at al. (2006) 
acknowledged that IRT-LRT approach used to DIF detection remained 
questionable. We considered that in order to ensure the smooth transition to 
CATs data, FIPC without imputation may be a better-suited and efficient 
alternative for detecting DIF on pretest items than concurrent calibration. 
Moreover, if operational item parameters are fixed and IRT standard 
assumptions hold, imputation would not be necessary and in fact should be 
avoided because it might introduce distortions on the item parameters and 
group distribution scale if the CAT ability has been estimated with high 
error levels. 

This study analyze the performance of the IRT-LRT in detecting DIF 
on pretest items seeded in CATs, using FIPC to compare two ways of 
handling the missing data problem, with imputation (as in Lei et al., 2006) 
and without imputation. We will first describe the IRT-LRT and FIPC in 
greater detail.  

 
Item Response Theory Likelihood Ratio Test in the CAT 

Environment 
Two different models are estimated for the assessment of DIF. In the 

first one, called the compact model, the parameters of all the items for the 
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reference and the focal group are constrained to be equal. In the second one, 
the augmented model, the parameters of the anchor items are fixed equally 
across the groups, and all (or some) of the parameters of the item tested for 
DIF vary. The DIF will be detected when the fit of the augmented model is 
significantly better than that of the compact model. The log-likelihood of 
the models is the measure of the fit, and the log-likelihood ratio (LR) is a 
measure of the fit increment for the augmented model: 

 )ln2(ln2 AC LLLR −−−= , (1) 

where LC is the log-likelihood of the compact model, and LA is the log-
likelihood of the augmented model. The IRT-LR is approximately 2χ  
distributed, with degrees of freedom equal to the difference in the number 
of free parameters. If the general test is significant, an omnibus test is easily 
carried out to establish whether DIF is due to differences in a, b or c 
parameters when a 3PL is used. These tests are conducted by constraining 
the individual item parameters in the compact model. Because power and 
Type I error rates for the follow-up test are highly dependent on those for 
the general test, only the general test is evaluated in the present study. 

IRTLRDIF (Thissen, 2001) is the software usually used to perform 
the estimations required for this technique of DIF detection. Thissen (2001) 
cited DIF detection in CAT as an important motivation for the development 
of IRTLRDIF (p. 14). This was the software used in the study of Lei et al. 
(2006), in which one subset of the operational items was selected as anchor 
items, and the pretest items were tested for DIF. IRTLRDIF performs 
concurrent calibration. Thus, it estimates all the item parameters, including 
those from the operational items (already known) and those from the pretest 
item (those unknown and of interest). This implies unnecessary 
computational time and possible convergence problems. More importantly, 
with IRTLRDIF an additional step is required to place the pretest item 
parameters onto the operational established scale (Kim, 2006).  

Lei et al. (2006) evaluated the proposed IRTLRDIF adaptation 
method. They compared IRTLRDIF with the adapted SIBTEST, called 
CATSIB (Nandakumar & Roussos, 2004), and the logistic regression (LR) 
adapted by replacing the total score with the CAT trait estimate. They found 
that only the IRT-LRT provides adequate Type I error control consistently 
across all the sample-size and distribution conditions. In LR, Type I 
inflation was found to occur under impact conditions, which the authors 
partially attributed to the statistical bias introduced by the impact. In 
CATSIB, the inflation was noted to occur under impact and unequal 
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sample-size conditions, which the authors attributed to the low frequencies 
for some subgroups. 

Furthermore, the statistical power in detecting DIF was generally 
higher with a higher DIF size effect, under no impact, and with equal 
sample-size conditions. The IRT-LRT and LR were found to be more 
powerful than CATSIB in detecting non-unidirectional DIF, whereas 
CATSIB was more powerful in detecting unidirectional DIF (especially 
when the DIF size effect was small). Among the two methods considered to 
be suitable for non-unidirectional DIF detection in non-impact conditions, 
the IRT-LRT generally outperformed LR under unequal sample-size 
conditions, whereas LR was more powerful with equal sample-size 
conditions. The IRT-LRT was found to have lower power mainly in 
detecting difficult and low-discriminating non-unidirectional DIF items. 

Despite the generally satisfactory performance of the IRT-LRT in 
detecting DIF, the above-noted computational cost limits its use. In 
addition, not all the operational items could be treated as anchor items 
because IRTLRDIF was unable to handle so many items. Instead of treating 
300 items as anchors (the whole bank), Lei et al. (2006) used only 84 (those 
from a single content area). Problems partially arise due to the requirement 
of recalibrating operational items and thus can be avoided by the use of 
fixed parameter calibration (FIPC) methods. In FIPC, operational item 
parameters are fixed to their previously estimated values, and only pretest 
items are calibrated (Ban et al., 2001; Ban, Hanson, Yi, & Harris, 2002; 
Kim, 2006). We will now show how FIPC could be used to assess DIF in 
CAT environments. 

 
FIPC Methods Applied to DIF Detection 
Suppose that each examinee i of group g (g = 1 {reference}, 2 

{focal}), denoted by ig (ig = 1, ..., Ng, where Ng is the number of examinees 
in the group g), respond to one adaptive test, in which the items are selected 
from a set of J(ope) previously calibrated operational items and to J(pre) pretest 
items whose parameters are unknown. The likelihood of responses for each 
ig examinee, given the set of applied items (S), would be  
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examinee ig, and gΔ  = ( Jgg δδ ...1 ) denotes the collection of item parameters 
for the group g, where jgδ is the vector of parameters for item j in group g. 
The complete sets of examinees and items, as well as of parameters, is 
denoted as θ and ),( 21 ΔΔΔ = , respectively. Another important distinction 
in an online calibration setting is between the pretest and operational item 
parameters { gΔ  = ( )}. 

The EM algorithm may be used to find the values of the pretest item 
parameters, )( preΔ , when Δ  and θ  are simultaneously unknown. In each 
EM cycle l, E (expected) and M (maximization) steps are performed. In the 
E step, the posterior probabilities for 

gk
θ at each of Kg quadrature points    

(kg = 1,2,…Ki) are estimated assuming the provisional item and distribution 
parameters estimated in the previous cycle, )1(ˆ −l
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where )1(ˆ −l
gπ  refers to the provisional distribution parameters that determine 

)ˆ|( )1( −l
gkg

f πθ , the prior weights of 
gk

θ  for group g. For example, if the 

group distributions are assumed to be normal, gπ̂  would contain gµ̂ and  

gσ̂ , the mean and standard deviation for group g, respectively, and 

)ˆ|( gkg
f πθ  would be the prior normal distribution weight for the quadrature 

point 
gk

θ . Provisional initial estimates, )0(Δ̂  and )0(π̂ , are used in the first E 
step. 

The M step finds the )(ˆ l
gΔ  and )(ˆ lgπ  parameters that maximize the 

conditional expectation of the complete data log-likelihood, in which the 
expectation is taken with respect to the conditional distribution of the 
missing data, given the observed data and some fixed known values of the 
parameters (Dempster, Laird, & Rubin, 1977; Woodruff & Hanson, 1996):  
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A scale indeterminacy occurs if all the item parameters (operational 
and pretest) are estimated because the IRT ability scale is determined up to 
a linear transformation (e.g., Lord, 1980; pp. 36-38). Additionally, in DIF 
testing, the following constraints should be considered for model 
identification purposes: (a) the mean and standard deviation of the 
distribution of ability in the reference group are set at some specified values 
(e.g., 1µ = 0 and 11 =σ ); and (b) the parameters of a set of items, the 
anchor items, are constrained to be equal across the groups (e.g., 

)(2)(1
ˆˆ

opeope ΔΔ = ). One problem with these constraints is that the parameter 
estimates ( )(

ˆ
preΔ  and 2π̂ ) may be obtained on a metric scale that differs 

from the original operational item metric scale (v.g., if the reference group 
in the calibration study have 1µ ≠  0 or 11 ≠σ ). Furthermore, the 
recalibration of rarely applied operational items can be problematic. 

In an FIPC method, only the pretest item parameters have to be 
estimated. Operational items are also used as anchor items, but their 
parameters are fixed to their known values. This avoids the recalibration of 
operational items and solves the scale indeterminacy problem without 
additional constraints, allowing 1π̂  estimates (v.g., 1µ and 1σ are not 
assumed to be zero and one, respectively). Another additional advantage is 
that the )(

ˆ
preΔ  and  parameters are obtained on the operational item 

metric scale. 
Ban et al. (2001, 2002) and Kim (2006) suggested several variants in 

the application of the FIPC methods. Specifically, these FIPC methods are 
conceptually distinguished by the use of pretest item responses in 
estimating posterior probabilities that affect the number of times the prior 
ability distribution is updated and the number of EM cycles used. Kim 
(2006) compared these methods in terms of recovery of the trait distribution 
and pretest item parameters. In the said study, responses to a fixed test of 
operational and pretest items were simulated according to the 3PL model. 
First, the operational items were previously calibrated in a sample in which 
ability parameters were drawn from a standard normal distribution. Then, 
the operational item parameters were treated as fixed in the FIPC of pretest 
items. The results showed that only the multiple weights updating procedure 
(MWU-MEM), which uses operational and pretest item responses to update 
posterior probabilities at each EM cycle, produced proper results when the 
latent trait distribution in the new calibration sample differed from the 
standard normal distribution in the old calibration sample. Under these 
circumstances, the latent trait mean and variance parameter estimates had 

2π̂
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larger biases in the remaining procedures. Specifically, these biases were 
larger when the number of operational items was smaller. Finally, Kim 
found that a relatively large sampling error in estimating the operational 
fixed item parameters with a small sample (i.e., 300 examinees) did not 
appear to severely affect the estimation of both the underlying ability 
distributions and the new item parameters.  From these results, we selected 
the MWU-MEM as the potentially best FIPC method for DIF analyses in 
the presence of impact, in which the updating of prior weights, 1π̂  and 2π̂ , 
is critical. 

In summary, the primary purpose of this study is to evaluate the 
performance of the IRT-LRT obtained with FIPC in detecting the DIF of 
one pretest item seeded in a CAT. We propose FIPC as a more efficient 
method than the concurrent calibration because it does not require 
recalibrating operational items. Two methods were compared: FIPC with 
imputation and FIPC without imputation. Imputation has been claimed to be 
useful as a strategy to deal with missing responses to the operational items 
(Lei et al., 2006). However, single imputation does not consider uncertainty 
in the imputation procedure (Harmes et al., 2003; Little & Rubin, 1987). 
Accordingly, imputation is expected to produce worse results compared 
with non-imputation. This effect is expected to be larger when the CAT 
precision is lower (i.e., in a shorter CAT). Although we expect the 
application of the imputation-based method to be less successful, we 
include it because the only study that has applied the IRT-LRT to CATs 
advises its use (Lei et al., 2006).  

METHOD 
Conditions for CAT Application 
Each examinee was given a CAT of a fixed length, with items 

selected from among the 300 operational items. After the adaptive part of 
the test, all respondents were given the same 23 pretest items. For 
implementing the adaptive part, the real trait levels of the examinees were 
drawn from a standard normal distribution. Maximum a posteriori (MAP) 
was used for trait-level estimation, with a standard normal as prior 
distribution. Items were selected using the progressive method (Revuelta & 
Ponsoda, 1998). In this method, the selection of items has a high random 
component at the start of the test, while the importance of Fisher’s 
information increases as the test advances. It has been suggested that this 
item selection method should be among those preferred when item bank 
security is a concern (Barrada, Olea, Ponsoda, & Abad, 2010).  
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It must be noted that the pretest items were tested for DIF one at a 
time, excluding the information of the remaining pretest items. In these 
conditions, using a large number of pretest items is equivalent to using a 
single pretest item in a within-subjects design. In this way, the simulation 
time and sample variability are reduced.  

 
Parameters of the Operational Items 
The Law School Admission Test (LSAT) parameter distributions 

were used to create the 300 operational items, following the information 
provided by Nandakumar and Roussos (2004). For items with a b parameter 
≤ –1, the a parameter followed a log-normal distribution (–0.357, 0.25) 
within the [0.4, 1.1] range. For the rest of the items, the a parameter 
distribution was log-normal (–0.223, 0.34) within the [0.4, 1.7] range. The b 
parameter followed a N(0, 1) distribution within the [–3, 3] range, and the c 
parameter followed a uniform distribution within the [.12, .22] range. The 
operational item parameters were the same for the reference and focal 
groups (i.e., no DIF was considered for these items). 

 
Parameters of the Pretest Items 
The number of pretest items was 23. Ten of these had unidirectional 

DIF (i.e., the item systematically favors one group), six had non-
unidirectional DIF (i.e., the item favors one group or the other depending on 
the ability level), and seven had no DIF. Two conditions in DIF size were 
simulated: Half of the items had moderate DIF (β = .05), whereas the other 
half had large DIF (β = .10). DIF size was classified as moderate or large 
following Dorans and Holland’s (1993) criteria. β is a measure of the 
magnitude of the effect of DIF (Wainer, 1993), calculated as 

 )()|1()|1( θθθβ guPuP iFiR∫ =−== , (5) 

where )|1( θ=iRuP  and )|1( θ=iFuP  denote the probability of answering 
the item correctly for the reference and focal groups, respectively, and g(θ) 
is the density of θ, assuming a standard normal distribution. In other words, 
β is the expected value across ability levels of the absolute difference in the 
probability of correct responses between the groups when both groups have 
a standard normal ability distribution. 
- Items with unidirectional DIF. First, the items were produced for the 

focal group. Subsequently, the b parameter in the reference group was 
adjusted to obtain the desired DIF size. Of the 10 items, eight were 
obtained from the combination of the value in the a parameter (0.7 or 
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1.2), the value in the b parameter (–1.3 or 1.3), and the size of the DIF. 
The other two items represented an average LSAT item (a = 0.8, b = 0) 
with two different DIF sizes. The items were easier for the reference 
group because their b parameter was lower. 

- Items with non-unidirectional DIF. The a parameter for the focal group 
was equal to 0.8 for all these items. Non-unidirectional DIF was created 
by changing the a parameter in the reference group to obtain the desired 
DIF size. The six items were obtained from the combination of the value 
in the b parameter (–1.3, 0, 1.3) and the size of the DIF. The items were 
more discriminative for the reference group because their a parameter 
was higher. 

- Items without DIF. Seven items were used, of which six were obtained 
from the combination of the value in the a parameter (0.7, 0.8 or 1.2) and 
the value in the b parameter (–1.3 or 1.3). The other item represented an 
average LSAT item (a = 0.8; b = 0). 

For all the pretest items, the c parameter was set to .17. The parameter 
values of the items studied were considered to be within the range observed 
in the actual tests (Lopez-Rivas, Stark, & Chernyshenko, 2008). Table 1 
shows the item parameters. 

 
 

Table 1. Item parameters used to generate the studied items. 
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Manipulated Factors 
The independent variables were as follows: 

- CAT length: Two test lengths of 10 and 30 items, respectively, were 
simulated. CAT items were selected from the operational item pool. 

- Impact: Whereas the trait level for the reference group always followed 
N(0, 1), three conditions were generated for the focal group: without 
impact [N(0, 1)], with unfavorable impact [N(–0.5, 1)], and with 
favorable impact [N(0.5, 1)]. These distributions are common in applied 
contexts and simulation studies (French & Finch, 2008; Finch & French, 
2007; Lei et al., 2006; Stark, Chernyshenko, & Drasgow, 2006). 

- Sample size: Two equal sample-size conditions were included for the 
focal/reference groups in the study: 250/250 and 500/500. A sample size 
of 500 examinees per group is recommended for the DIF analysis in 
fixed tests in procedures based on the IRT (Clauser & Mazor, 1998). The 
small samples were close to those used by Kim (2006) as an example of 
a realistic situation within the context of online calibration. 

Each of the 12 different conditions (2×3×2) was replicated 100 times. 
In each repetition, the 23 pretest items were administered varied according 
to the following factors: 

- Type of DIF: Without DIF, unidirectional DIF, and non-unidirectional 
DIF. 

- DIF size: Small (β = .05) and large (β = .10). 
An additional manipulated factor was the use of empirical or imputed 

data sets (see the following paragraph). 
 
Compared Methods for DIF Detection 
Two methods were compared: (a) IRT-LRT with FIPC and 

imputation, and (b) IRT-LRT with FIPC and without imputation. The 
methods were programmed using the subroutines provided by the computer 
program ICL (Hanson, 2002). To test the DIF, the pretest items were 
evaluated independently one by one, using just the operational items as 
anchors and excluding the responses to the remaining pretest items. To 
obtain each IRT-LRT contrast (Equation 1), FIPC was applied twice to get 
the log-likelihood: First, for the compact model (assuming that the pretest 
item parameters are equal across the groups) and, second, for the augmented 
model (allowing the studied item parameters to differ). The difference in the 
number of estimated parameters was three (the number of item parameters), 
which was the degrees of freedom of the IRT-LR statistics.  
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In applying FIPC, the MWU-MEM was used (see Kim, 2006). In this 
method, the operational and pretest item parameters were used to compute 
and update the posterior probabilities in the E step (Equation 3). In both 
models (augmented and compact), the operational item parameters were 
fixed to their known values, and the pretest item parameters were estimated. 
The prior distributions for the a and c pretest item parameters were defined 
{a ~ log-normal (0, 0.5); c ~ beta (4, 16)}. These distributions are common 
to other estimation programs, such as PARSCALE and BILOG (du Toit, 
2003). 

In the augmented model, the ability distribution parameters were 
freely estimated in the reference and focal groups. The obtained ability 
distribution parameters were used (and fixed) in the compact model to 
preserve nesting for the IRT-LRT (a similar approach was used by Woods, 
2008). The ICL syntax and programs for automating the process are 
available from the authors. 

In the method without imputation, FIPC analysis was applied to the 
incomplete data set (with missing values for the non-administered 
operational items). In the method with imputation, missing responses were 
previously imputed before applying FIPC analysis. First, MAP ability 
estimates were computed based only on responses to operational items 
applied in the CAT. Then, probabilities of getting the items correct were 
generated according the known operational item parameters and CAT 
ability estimates. Finally, the imputed response was set equal to 1 if the 
probability value was greater than a random number from a uniform (0, 1) 
distribution and equal to 0 otherwise. 

 
Evaluation Criteria 
The relative effectiveness of the two methods (with and without 

imputation) was evaluated according to the following criteria: 
- DIF detection: To evaluate the effectiveness of DIF detection, the Type I 

error and power were calculated. A critical value was established for 
Type I errors of .05. The power was regarded as acceptable when its 
value was ≥ .80. 

- Recovery of distribution parameters for each group: The estimated mean 
and standard deviation of θ for the reference and focal groups were 
obtained in each augmented model. These values were compared with 
the true known values. The degree of recovery for these parameters was 
evaluated through bias. 
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- Recovery of DIF size (β): The quality of β
 
recovery was evaluated 

through bias. Following Nandakumar and Roussos (2004), we 
considered a bias > .01 in the effect size as problematic. β̂  was 
estimated from Equation 5, using the pretest item parameters estimated 
in the augmented model; )(θg  denoted the standard normal distribution. 
The estimated ability distributions were not considered in computing β̂ . 
Thus, differences between β  and β̂  should be attributed to differences 
between the true and the estimated item pretest parameters. 
 

Analysis 
ANOVAs were performed to determine the factors that affected our 

evaluation criteria. A mixed ANOVA was used, in which the methods (with 
and without imputation) applied were regarded as within-simulees 
variables, whereas CAT length, sample size, impact, and DIF effect size 
were treated as between-simulees variables. These analyses were carried out 
separately for unidirectional and non-unidirectional DIF. 

To gauge the effect size, a partial η2 measure was used. Reported 
results correspond only to effects with a magnitude of more than .06. Partial 
η2 over this value are considered as medium and over .14 as large in J. 
Cohen’s classification (1988, 1992). All the reported effects were 
significant at p < .05. 

RESULTS 
Type I Error Rate 
Table 2 presents the proportion of false positives (Type I error rates) 

for each type of method (non-imputed vs. imputed) by sample size, test 
length, and impact. It can be observed that the error rates are below the 
nominal level (i.e., < .05) across all the conditions. An ANOVA showed 
that the Type I error rates were essentially unaffected by the independent 
variables. None of these variables or interactions demonstrated a moderate 
or higher effect size (η2 > .06). 

 
Power 
Power for unidirectional DIF. Table 3 (top) shows the power in 

detecting unidirectional DIF. As expected, the power increases with the DIF 
size [F(1, 2376) = 5615.27, η2 = .703] and sample size [F(1, 2376) = 
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987.83, η2 = .294]. Surprisingly, increments in the test length had no 
significant effect on power. Adequate power was achieved when the sizes 
of the DIF and sample were large. With regard to the methods, and contrary 
to our hypothesis, the non-imputation alternative was not found to be 
superior to the imputation method. An interaction was found between the 
methods and the θ distribution of the focal group [F(2, 2376) = 478.67, η2 = 
.287]. Also, there was an almost medium sized interaction effect among the 
methods, θ distribution, and test length [F(2 .2376) = 72.95, η2 = .058], as 
shown in Figure 1. As can be seen from the figure, non-imputation 
conditions were almost unaffected by impact. However, when missing 
values were imputed, the power was reduced because the impact shifted 
from favoring the reference group to the reverse. When the impact favored 
the reference group [NF(–0.5, 1)], imputation performed better than the non-
imputation method. In the absence of impact, there was no difference 
between the methods. Finally, when the impact favored the focal group 
[NF(0.5, 1)], the imputation method performed worse than the non-
imputation method. These effects were higher when the test was short. 

 
 

Table 2. Type I error rate by sample size, test length, θ  distribution of 
the focal group and method. 
 

 
 
 
 
Power for non-unidirectional DIF. Table 3 (bottom) shows the 

power for the non-unidirectional DIF. It can be noted that the pattern of 
results is similar to that described for unidirectional DIF; i.e., the power 
increases with the DIF size [F(1, 2376) = 3528.10, η2 = .598] and sample 
size [F(1, 2376) = 744.70, η2 = .239]. Adequate power was achieved when 
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the sizes of the DIF and sample were large. For non-unidirectional DIF, the 
presence of imputed responses had no relevant main or interaction effects 
(see Figure 1). Again, non-imputed conditions did not perform better than 
conditions with imputations. 

 
 

Table 3. Power rate by sample size, test length, θ  distribution of the 
focal group and method for both unidirectional and non-unidirectional 
DIF. 
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Figure 1. Power rates for detecting unidirectional and non-
unidirectional DIF by focal group θ  distribution, test length and 
method. 
 

 
Recovery of the ability distribution parameters. Figures 2 and 3 

present a summary of the results of the bias in the ability distribution 
parameters recovery. It can be observed that there is no appreciable 
difference in the recovery of the distribution by type of DIF, DIF size, or 
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sample size. Therefore, the average bias for the mean (Figure 2) and 
standard deviation (Figure 3) for each method has been plotted as a function 
of the test length and focal group θ distribution. 

The average bias for the reference group mean (Figure 2, top) was 
higher when responses were imputed [F(1, 1188) = 7456.12, η2 = .863]. 
Imputation overestimated the mean, whereas non-imputed conditions led to 
unbiased estimates. An interaction effect was found between the method 
and test length [F(1, 1188) = 1627.98, η2 = .578] because the overestimation 
was greater in the short-test condition. 

The bias of the focal group mean (Figure 2, bottom) varied according 
to the presence of imputed responses [F(1, 1188) = 7904.16, η2 = .869], 
with imputation producing a higher bias. Non-imputation led to unbiased 
results. The bias for the imputation method varied with the impact, as 
indicated by a two-way interaction between the method and the focal group 
distribution [F(2, 1188) = 13755.05, η2 = .959], and with the test length 
[F(1, 1188) = 1902.01, η2 = .616]. Finally, a three-way interaction was 
found between the method, distribution, and test length [F(1, 1188) = 
3486.57, η2 = .854]. The imputation method produced a positive bias (an 
overestimation) of the underlying mean at NF(–0.5, 1), which decreased 
when NF(0, 1) and became negative (underestimate) at NF(–0.5, 1); this 
effect was higher with a short test. 

The analysis of bias of the standard deviation revealed a large size 
effect for method [reference group: F(1, 1188) = 25276.56, η2 = .955; focal 
group: F(1, 1188) = 25498.07, η2 = .955] and test length [reference group: 
F(1, 1188) = 329.42, η2 = .217; focal group: F(1, 1188) = 282.93, η2 = .192] 
for both groups. There was also an interaction between method and test 
length for both groups [reference group: F(1, 1188) = 9039.52, η2 = .884; 
focal group: F(1, 1188) = 8654.48, η2 = .879]. An important 
underestimation of the standard deviation was detected when using 
imputation when compared with non-imputation, and this tended to be 
larger when the test length was shorter. For the focal group, there was also a 
triple interaction between method, test length, and impact [F(2, 1188) = 
36.97, η2 = .059]. The graph presented in Figure 3 shows a larger 
underestimation for imputation when a test length of 10 items and the 
distribution NF(–0.5, 1) were used. In brief, non-imputation had better scale 
recovery for both groups in all the conditions. 

 
Recovery of the DIF effect size. An additional issue pertinent to 

understanding the performance of the methods is effect size recovery. 
Figure 4 shows the average bias for unidirectional (top) and non-
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unidirectional (bottom) for β in both methods as a function of the focal 
group θ distribution and test length. The bias for the non-imputed 
conditions remained stable and, importantly, below the limit of .01 
(Nandakumar & Roussos, 2004) for different lengths and impacts. For the 
unidirectional DIF, a large three-way interaction was found between 
method, distribution, and test length [F(2, 2376) = 1500.439, η2 = .558]. 
The bias for the imputed method ranged from positive and above the bias of 
the non-imputed methods when NF(–0.5, 1) to negative when NF(0.5,1). This 
trend was more pronounced when the test was short. A second three-way 
interaction was found between method, distribution, and DIF size [F(1, 
2376) = 87.55, η2 = .069]. In this case, the interaction between method and 
distribution was similar to that previously described but modulated by the 
DIF size, as shown in Figure 5 (top). 

 

 
 
Figure 2. Average bias of the mean for the reference (top) and the focal 
(bottom) groups by test length and focal group θ  distribution. 
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Figure 3. Average bias of the standard deviation for the reference (top) 
and the focal (bottom) groups by test length and focal group θ  
distribution. 
 
 

For the non-unidirectional DIF (Figure 4, bottom), imputation 
produced an underestimation of β [F(1, 2376) = 3767.33, η2 = .613]. There 
was an increment in the effect size underestimation bias when the DIF size 
was large (see Figure 5, bottom) [F(1, 2376) = 627.75, η2 = .209]. Finally, 
an interaction effect of method with test length [F(1, 2376) = 409.87, η2 = 
.147] and DIF effect size [F(1, 2376) = 607.36, η2 = .204] was found, 
implying that the differences between the methods were higher in large DIF 
conditions and with short tests (see Figure 6). The average underestimation 
was > .01 for imputation with large DIF and a test length of 10 items. 
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Figure 4. Average bias of the effect size for unidirectional DIF (top) and 
non-unidirectional (bottom) for each method by test length and focal 
group θ  distribution. 
 

DISCUSSION AND CONCLUSIONS 
In the present study, we evaluated the feasibility of applying FIPC in 

the IRT-LRT for DIF analysis for pretest items. We consider FIPC as 
conceptually more efficient for the IRT-LRT than the concurrent calibration 
used by Lei et al. (2006) due to several reasons. First, FIPC is more time-
efficient and avoids problems related to incompleteness of the response 
matrix because it does not require reestimation of operational items. 
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Second, multigroup MWU-MEM FIPC can be easily applied using the 
subroutines provided by the computer program ICL (Hanson, 2002), which, 
unlike IRTLRDIF, does not have restrictions in the size of the matrix to be 
analyzed (Lei et al., 2006). Third, the estimated parameters of the new items 
are automatically placed on the existing scale; therefore, a linking step is 
not required.  

 

 
 
Figure 5. Average bias of the effect size for unidirectional DIF (top) and 
non-unidirectional (bottom) for each method by DIF size and focal 
group θ  distribution (unidirectional DIF). 
 

-‐0.020

-‐0.010

0.000

0.010

0.020

N(-‐0.5,1) N(0,1) N(0.5,1)

Bi
as
	  (	  
Ef
fe
ct
	  si
ze
	  )

β=0.05

-‐0.020

-‐0.010

0.000

0.010

0.020

N(-‐0.5,1) N(0,1) N(0.5,1)

β=0.10

DIF Size

-‐0.020

-‐0.010

0.000

0.010

0.020

N(-‐0.5,1) N(0,1) N(0.5,1)

Bi
as
	  (	  
Ef
fe
ct
	  si
ze
	  )

β=0.05

-‐0.020

-‐0.010

0.000

0.010

0.020

N(-‐0.5,1) N(0,1) N(0.5,1)

β=0.10

non	  imputed imputed

Unidirectional	  DIF

Focal	  Group	  Distribution

Non-‐unidirectional DIF



FIPC for assessing DIF in CAT 353 

 
 
Figure 6. Average bias of the effect size for each method by test length 
and DIF size (non-unidirectional DIF). 
 
 

Lei et al. (2006) proposed the imputation of missing responses by 
taking the estimated trait level as a real trait level. To test the effects of 
response imputation, we applied FIPC with and without imputation. Type I 
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higher effect on Type I error rates, it seems that the α value that leads to 
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On the other hand, it was found that regardless of the method, power 
rates were impacted greatly by the DIF size and sample size, as reported in 
previous DIF studies with conventional (Finch, 2005; Finch & French, 
2007; Stark et al., 2006; W. Wang, 2004; W. Wang & Yeh, 2003) and 
adaptive tests (Lei et al., 2006; Nandakumar & Roussos, 2001, 2004). In the 
present study, samples of 1,000 examinees were required to achieve suitable 
power values (> .80). In addition, these values were only reached in the 
detection of items with large DIF. 

Despite the above-mentioned similarities, some differences between 
the methods were found in the power for detecting unidirectional DIF in the 
presence of impact. In this condition, when responses were imputed, the 
power rates were severely dependent on the ability distributions of the focal 
group, especially when the CAT length was shorter. Imputation showed a 
lower power rate compared to non-imputation in the N(–0.5, 1) condition 
but, unexpectedly, was superior in the N(0.5,1) condition. 

This unexpected last result is actually due to an overestimation of the 
effect size ( β̂ ) produced by a severe bias in the scale recovery. An in-depth 
analysis revealed that imputation produces compression in the scale (i.e., 
the standard deviation of the latent trait distribution had been 
underestimated for both groups) and that, in the presence of impact, the 
latent trait mean of the focal group moves toward zero (it yields to an 
underestimation when 5.0−=Fµ  and to an overestimation when   

5.0F =µ ). These distortions are greater when the CAT is short, and they 
occur due to the fact that the estimated MAP ability level is used to carry 
out the imputations. It is well known that the MAP procedure produces 
biased estimates toward the mean of the prior distribution and that the bias 
tends to correct itself as the length of the test increases (T. Wang & Vispoel, 
1998). Thus, because imputed responses are generated with the CAT ability 
MAP estimate, which are shrunk toward the mean of the prior distribution 
(zero), the latent ability distribution of the focal group is also shrunk. Thus, 
in the N(–0.5, 1) condition, as an effect of imputation, the mean for the 
focal group is overestimated. Consequently, the difficulty parameter of the 
item in the focal group is also overestimated. It must be noted that in our 
simulation study, in the unidirectional DIF conditions, the true bF 
parameters were higher than the true bR parameters (the items were easier 
for the reference group). Overestimating the bF parameters artificially 
increases the difference between the item characteristic curves of the 
groups, causing the effect size to be overestimated and thus increasing the 
DIF detection rate.  
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Indeed, the results indicate that FIPC without imputation shows more 
precise distribution parameter and β̂  estimates, regardless of the factors 
manipulated. The quality of the recovery does not depend on the impact or 
test length. Moreover, the use of the pretest item with DIF for updating 
posterior probabilities does not seem to have affected FIPC negatively. In 
all the simulated conditions without imputation, the average bias in 
estimating the effect size was never > .01, whereas in some conditions with 
imputed responses, this limit was surpassed. 

If we take into account the results regarding the factors and efficiency 
of the methods, we can conclude that multigroup FIPC is a feasible 
procedure for assessing DIF in pretest items applied in online calibration 
settings. FIPC shows power rates over .557 when the DIF size was large (β 
= .10), even with small sample sizes (N = 250/250). At this point, the 
known trade-off between Type I error rates and power should be noted. 
Higher power could be achieved if Type I errors approached their nominal 
level. Power results are encouraging because they indicate that the 
technique can be used even in the first phases of studies of the psychometric 
properties of pretest items. 

We can conclude that it is not recommendable to impute the responses 
in the data matrix generated by a CAT, especially for short CAT. Single 
imputation based on Bayesian CAT ability estimate, results in biased 
standard deviations for the latent trait distributions. Moreover, in the 
presence of impact, biased impact and DIF size effect measures may be 
obtained. This is important because the decision to discard an item due to 
the presence of DIF should be based both on the measurement of statistical 
significance and on the evaluation of the magnitude of the DIF. 
Furthermore, the recovery of latent distribution parameters is important not 
only to study impact in the CAT environment but also to obtain DIF size 
effect measures based on the focal group distribution (Wainer, 1993). 

Some issues deserve attention in subsequent studies. Following the 
results of previous simulation studies (Ban et al., 2001, 2002; Kim, 2006), 
the MWU-MEM was judged as the best way to conduct FIPC, although in 
those studies no item had DIF. Future studies should consider the effect of 
DIF in the different available FIPC methods. In our study, only one pretest 
at a time was analyzed, excluding the remaining pretest items. We preferred 
this approach because the inclusion of other (with suspicious DIF) pretest 
items could affect parameter estimates with the MWU-MEM. Future 
research should compare the performance of the methods when more than 
one pretest item is included. Additional studies should extend the FIPC to 
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the detection of DIF in operational items. Finally, the discrepancy between 
expected and obtained Type I errors deserves further research. 

Although FIPC provides one easy method for testing DIF, other 
procedures for imputing responses deserve more attention. Recently, Finch 
(2011) has suggested the use of Multiple imputation for detecting DIF in 
fixed tests, when researcher is interested in item parameters. Additionally, 
correcting Bayesian estimates for unreliability might be considered (de la 
Torre & Deng, 2008). 

Summarizing, we have shown how FIPC could be implemented to 
detect DIF using IRT-LRT in CAT environments. This has been done with 
ICL (Hanson, 2002), a freeware program. Contrary to previous claims (Lei 
et al., 2006), the sparse matrix, characteristic of CATs, does not need to be 
filled with imputed responses generated with the CAT ability estimate. In 
fact, non-imputing responses, when compared with imputation, is a better 
option in terms of power (equal mean power, but this power does not 
depend on specific simulation conditions) and recovery of parameters of the 
trait level distribution and effect size. 

RESUMEN 
Calibración con parámetros de los ítems fijos para la evaluación del 
funcionamiento diferencial del ítem en tests adaptativos informatizados. 
En tests adaptativos informatizados los ítems pretest se presentan junto con 
los ítems operativos para renovar el banco de ítems. Los ítems pretest se 
calibran y se analiza el posible funcionamiento diferencial de los ítems 
(FDI). Este análisis presenta algunos problemas debido a la gran cantidad de 
respuestas faltantes, una de las posibles soluciones es el uso de métodos de 
calibración con parámetros fijos (Kim, 2006). En este estudio, aplicamos el 
método de múltiples actualizaciones de los pesos y múltiples ciclos EM con 
imputación de respuestas (tal y como propusieron Lei, Chen, y Yu, 2006) y 
sin imputación de respuesta para los ítems no aplicados. Empleamos el test 
de razón de verosimilitudes de la TRI para la detección del FDI. Los 
factores manipulados fueron el tipo de FDI, el tamaño del FDI, el tamaño 
del impacto, la longitud del test, y el tamaño de las muestras.  Los resultados 
señalan que el método de calibración con parámetros fijos es una alternativa 
adecuada para la detección de un FDI grande cuando se utilizaron muestras 
grandes. En presencia de impacto el uso de imputación de respuestas 
introdujo un sesgo en las medidas del tamaño del efecto del FDI. 
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